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The stability of a family of tanh mixing layers is studied a t  large Mach numbers using 
perturbation methods. It is found that the eigenfunction develops a multilayered 
structure, and the eigenvalue is obtained by solving a simplified version of the 
Rayleigh equation (with homogeneous boundary conditions) in one of these layers 
which lies in either of the edernal streams. Our analysis leads to a simple hypersonic 
similarity law which explains how spatial and temporal phase speeds and growth 
rates scale with Mach number and temperature ratio. Comparisons are made with 
numerical results, and it is found that this similarity law provides a good qualitative 
guide for the behaviour of the instability at high Mach numbers. 

In addition to this asymptotic theory, some fully numerical results are also 
presented (with no limitation on the Mach number) in order to explain the origin of 
the hypersonic modes (through mode splitting) and to discuss the role of oblique 
modes over a very wide range of Mach number and temperature ratio. 

1. Introduction 
There has recently been a resurgence of interest in the stability characteristics of 

supersonic mixing layers (Papamoschou 1986; Jackson & Grosch 1988; Tam & Hu 
1988). The primary motivation seems to come from its potential application to the 
design of hypersonic propulsion systems (Kumar, Bushnell & Hussaini 1987). 

This paper is concerned with the inviscid instabilities of a compressible mixing 
layer at the interfacial region between two coflowing uniform streams when a Mach 
number, m,, based on the velocity difference of these streams, is much larger than 
unity. 

The basic formulation of the compressible shear flow stability problem (in both 
free and wall-bounded shear flows) is given by Lees & Lin (1946). Miles (1958) used 
the vortex sheet model to study the stability of free shear layers and concluded that 
the flow becomes neutrally stable above a certain supersonic Mach number which 
depends on the temperature ratio across the vortex sheet. Subsequent analyses by 
Blumen (1970), Blumen, Drazin & Billings (1975), and Lessen, Fox & Zien (1965), 
who considered finite-thickness mixing layers, but only for isothermal flows, showed 
that the actual flow merely becomes less unstable to temporally growing disturbances 
at high Mach numbers, Gropengiesser (1969), and later Jackson & Grosch (1988), 
considered the non-isothermal cwe for the more realistic, spatially growing modes. 
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The high-Mach-number stability characteristics of these flows appear to be quite 
complex and, in this paper, we attempt to sort these out by developing a high-Mach- 
number asymptotic solution to the compressible Rayleigh equation for a general 
non-isothermal free shear flow. Cowley & Hall (1990) recently obtained such a 
solution for a wall-bounded flow, but the structure of our solution is quite different 
from theirs. Like the Cowley & Hall (1990) result, our eigensolutions exhibit a 
multilayered structure, but in our case, there are (usually) five distinct layers rather 
than just two as in the Cowley & Hall (1990) analysis. 

We base our asymptotic scaling on the numerical work of Jackson & Grosch 
(1988), which shows that, a t  high Mach numbers, there are two distinct instability 
modes whose neutral wavenumbers do not decrease and whose (real) phase speeds 
approach the velocities of the external streams as the Mach number becomes large. 
For definiteness, we restrict the discussion and analysis to the so-called ‘slow mode ’ 
whose (real) phase velocity approaches that of the low-speed stream, but the result 
is then extended to the ‘fast mode’ by symmetry arguments. Under certain 
conditions, Jackson & Grosch also find a third mode whose instability characteristics 
are very unusual. This is discussed more fully in $2;  however, we emphasize that our 
work does not focus on this third mode. 

Benny & Bergeron (1969) were the first to consider shear-layer vorticity waves 
with phase velocities approaching that of the free stream. Bodonyi, Smith & Gajjar 
(1983) further extended these ideas in a different setting. 

We find that aerodynamic or viscous heating of the base flow causes the coefficient 
of one of the terms in Rayleigh’s equation to become very large in the limit as 
the Mach number, m,, goes to  infinity (the coefficient behaves as O(m:)) and that 
the equation can be solved by the WKBJ method in the main part of the shear layer. 
However, this solution does not satisfy the appropriate boundary conditions in the 
external streams, and two additional ‘edge layers ’ (essentially in the two external 
streams) have to be introduced. The structure of the high-speed edge-layer solution 
depends on the propagation angle, 0, of the wave. This solution is again of the WKBJ 
type when COSB is bounded away from zero (i.e. m1 cos8 % 1). The main shear-layer 
WKBJ solution then contains a turning point a t  the sonic point (where the wave is 
moving transonically relative to the base flow). This solution is oscillatory (i.e. of 
‘Mach wave’ form) on the high-speed side of the turning point but grows 
exponentially towards the low-speed stream (i.e. is of ‘incompressible ’ form). 

The turning point moves into the high-speed edge layer when cos8 x 0 (i.e. 
m, cos 8 = O( 1)) in the limit as m, --f 0;). The solution for this case (which satisfies the 
appropriate free-stream boundary condition) is given by a confluent hypergeometric 
function. This solution then matches onto the exponentially growing WKBJ solution 
in the main shear layer. The latter solution, therefore, becomes exponentially large 
as it approaches the low-speed stream in both cases (i.e. for all 0, -in < 8 < in) and 
has to be brought to zero through the low-speed edge layer. 

The flow in this edge layer is governed by a ‘reduced’ (i.e. simplified) Rayleigh 
equation that involves the wavenumber and the, as yet, unknown complex phase- 
speed perturbation (i.e. the scaled difference between the actual complex phase speed 
and the low-speed stream velocity) as parameters. The solution to this equation must 
exhibit exponential decay towards the main shear layer in order to match onto the 
exponentially growing WKBJ solution in this region, and must also go to zero in the 
low-speed stream in order to satisfy the appropriate boundary conditions there. This 
leads to a homogeneous boundary-value problem which determines the complex 
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FIGURE 1.  The various regions of the instability mode at large Mach numbers. p = f, + 1. 

phase-speed perturbation as its eigenvalue. These various regions are shown in 
figure 1. 

The eigenvalue problem is, therefore, completely decoupled from the flow (i.e. the 
eigenfunction structure) in the rest of the shear layer. It is possible to derive a 
hypersonic similarity rule from these considerations. This rule provides a simple 
scaling of the instability (i.e. growth rate and (real) phase speeds) as a function of 
Mach number, temperature ratio, and wavenumber or frequency. 

Like the original Rayleigh equation, the reduced Rayleigh equation has a regular 
singular point - indicating that the critical layer has moved into the low-speed edge 
layer. However, the eigenfunctions themselves are (surprisingly) iion-singular there 
because the critical layer coincides with the generalized mean flow inflection point, 
which also moves into the low-speed layer as m, -+ 00. It is worth noting that these 
inflectional asymptotic modes are the continuations of non-inflectional finite-Mach- 
number modes, at  least to the order of accuracy to which our analysis is carried out. 

The plan of the paper is as follows. The problem is formulated in $2, and the 
WKBJ solution for the main shear layer is constructed in $3. Section 4 is concerned 
with the high-speed edge layer, and in $5,  we consider the flow in the transonic layer 
for the case where this layer is distinct from the upper-edge layer (i.e. cos0 =k 0). The 
low-speed edge layer is treated in $6, and the eigenvalue problem for the complex 
phase speed is formulated there: i.e. we derive a differential equation containing a 
complex parameter (the eigenvalue) along with appropriate homogeneous boundary 
conditions. We solve this problem numerically and thereby determine the eigenvalue 
using a standard finite-difference procedure. This leads to a hypersonic similarity 
law, which is discussed in $ 7  along with the numerical computations. Other 
numerical results (for the full Rayleigh problem) are used to describe the splitting of 
the original low-Mach-number instability mode into two distinct modes as the Mach 
number increases and to explain how these two modes are connected with the neutral 
modes in Miles' (1958) vortex-sheet analysis. 



588 T. F .  Balsa and M .  E .  Coldstein 

2. Formulation of problem 
In order to investigate the linear stability of a compressible mixing layer, we 

invoke the usual assumptions (i.e. parallel base flow, inviscid disturbances, etc.) of 
classical stability theory (Betchov & Criminale 1967; Drazin & Reid 1981), and write 
the Rayleigh equation for the modal pressure amplitude, p = p(y), as 

df - 
d2p dy dp 
-- 2 7 - + Q p = O ,  
dy2 f-cdy 

where (1  b)  

The above form of the Rayleigh equation is slightly different from that derived by 
Betchov & Criminale (1967, p. 177) because in our equation y is a modified cross- 
space coordinate (to be defined more precisely below); our form of the Rayleigh 
equation is also used by Gropengiesser (1969) and by Jackson & Grosch (1988). The 
actual pressure perturbations in the shear layer are expressed as 

Q = - K 2 ~ [ i  - (+,)2 co8* e(f- c " ) 2 / q .  

p(y)exp [i(k(z-cct)+lz)]+cc, ( 1 4  
where (2, z )  are the streamwise and spanwise coordinates and time is denoted by t .  In 
( l c ) ,  (k, 1)  are the streamwise and spanwise wavenumbers (which may be complex), 
c is the (complex) phase speed (or the eigenvalue) of the mode and i = ( -  1)s. The 
symbol cc denotes the complex conjugate of the term it follows in an expression. 

The Rayleigh equation, (la), is written in terms of a 'normalized' base flow 
velocity, f = f(y), and a 'normalized' eigenvalue, c", which are related to the 
corresponding physical variables by 

U = Umi-!jAUf, Pa)  

and c = Urn +!jAUcA, (2 b)  

where Urn and AU denote the average speed of and the velocity difference across the 
mixing layer respectively ; Urn = f (U,  + U2) ,  AU = U, - U, > 0. The velocities of the 
external streams at  y = f 00 are given by tJl,2 = const. and the velocity of the 
unperturbed base flow is [U(y), O,O]. We introduce these 'normalized ' or canonical 
quantities f and c" because the eigenvalue c" - as a function of the wavenumbers k 
and 1 -will then be independent of the external stream velocities, U, and U,. The 
similarity parameters associated with this problem are discussed at the end of this 
section; for a picture of the mixing layer see figure 2. 

The remaining variables in (1 b )  are the total wavenumber 

K = (k2+E2)i ( 3 4  

k = Kcos8 (3  b )  

and I = KsinO, (3 c) 

(whose real part is taken to be non-negative), the obliqueness angle, 8, defined by 

the unperturbed (non-dimensional) temperature, T, of the mixing layer, which is 
normalized so that T = 1, T, at y = & 00, respectively, where y is related to 
the physical cross-stream variable, Y, through the Howarth-Dorodnitsyn trans- 
formation 

Y = Tdy, ( 3 4  
0 
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Mach waves 

(schematic) 

FIGURE 2. Schematic representation of the flow field. yo = tanh-lf,; f , ,  = WKBJ turning point. 

and, finally, m, is the Mach number based on the velocity difference across the 
mixing layer and the unperturbed speed of sound at y = + 00, i.e. 

(4) 
AU 

m, = -, 
a, 

a, = unperturbed sound speed at y = + 00. 

We use a lower case m to denote this Mach number and reserve the letter M for a more 
conventional Mach number, say M ,  = U,/a, as is customary in aerodynamics. Note 
that, by symmetry, there is another Mach number which is on equal footing with (4), 
namely, m, = AU/a, but this parameter is eliminated in favour of the temperature 
ratio T, = (rn,/m,)2. The unperturbed sound speed at  y = - 00 is given by a,. Our 
normalization clearly shows that the important Mach number of the problem is the 
one based on the velocity difference across the mixing layer. 

Finally, we note that the angle 0 denotes the direction of propagation (with respect 
to the x-axis) of the phase fronts of the instability wave when the wavenumbers are 
real (temporal stability) or, the direction along which the instability wave exhibits 
maximum spatial growth, when the wavenumbers are complex (spatial stability). 

In this paper the mean velocity and temperature profiles, f and T ,  will be specified 
as follows: we suppose that the Prandtl number is unity and that the fluid is a 
thermally and calorically perfect gas so that T is given by Crocco's equation 

T = 1 + - 1 ) (+,)'(I -f ') - !j( 1 - T,) ( 1 -f ), (5a) 

where y = const. is the isentropic exponent. The assumptions under which the 
Crocco equation is valid are discussed in Moore (1964) ; both the Crocco equation and 
the Howarth-Dorodnitsyn transformation are familiar entities in compressible 
boundary-layer theory (Schlichting 1968, pp. 315,324) and in hypersonic flow theory 
(Hayes & Probstein 1966, p. 230). 
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The normalized or canonical velocity profile, f ,  which must assume the values & 1 
at  y = f co (see (2a ) ) ,  is chosen to be 

f = tanh y. ( 5 b )  

This profile is selected because it closely represents experimentally observed 
profiles and because its stability has been extensively studied by others as well 
(Blumen 1970; Blumen et al. 1975; Jackson & Grosch 1988). The actual base velocity 
profile, U ,  will depend on the Mach number, m,, and on the temperature ratio, T,, 
through the Howarth-Dorodnitsyn transformation ; this important dependence was 
ignored by Blumen et al. (1975). 

There are, of course, other choices for f (e.g. erfy, Lock profile (Gropengiesser 
1969), etc.). The extension of our principal theoretical results to these other profiles 
requires minor modifications in the analysis (see $7). The introduction of the tanh 
profile makes the analysis more concrete and is, in any case, the one that will be used 
in our numerical computations because of its ‘symmetry ’. 

Although key numerical results will be presented in $ 7 ,  we need some information 
on them at this point to  motivate the analysis. This information may be found in 
Jackson & Grosch (1988); above a certain Mach number, which depends on the 
temperature ratio T! and the obliqueness angle 8, a shear layer may sustain several 
instability modes. One of these modes has spatial growth rates of 0(1) and phase 
velocities (approximately) equal to  zero. These modes have two surprising properties ; 
the most unstable mode is two-dimensional and its maximum growth rate occurs a t  
zero frequency. If these modes indeed exist, they are crucially important at large 
Mach numbers ; but their very existence, and certainly their relevance have not been 
demonstrated convincingly (Jackson & Grosch promise to do so in a future study). 
Therefore, the analysis in this paper is not directed a t  these modes but, in fact, is 
directed a t  those other modes whose existence and relevance have been demonstrated 
by several authors (Gropengiesser 1969; Blumen et al. 1975; Jackson & Grosch 1988). 

These latter pair of modes behave in a much more physical manner and are related 
to the well-known incompressible mode through ‘mode splitting ’ (described in 8 7.1). 
At large Mach numbers, these modes have small growth rates and convection speeds 
which are (approximately) those of the two external streams. This implies that the 
critical layer moves progressively further into one of the external streams as the 
Mach number becomes large. It is convenient (but not essential, see for example 
Cowley & Hall 1990) to keep the critical layer a t  a finite point as m, + co . Therefore, 
we introduce a one-to-one transformation via ( 5 b )  and consider f as our new 
independent variable. Then, after the introduction of a new dependent variable, 

the Rayleigh equation (1 a )  becomes 

w = 0, 
2f 2 

where the quantity Q is still given by (1 b) .  The compressible (unstable) modes of a 
mixing layer satisfy (6 b)  with the boundary condition W = 0 a t  f = & 1 ; we always 
consider a neutral mode as the limit of an unstable mode when the growth rate of the 
latter tends to zero. 
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It is clear from the governing equation (6b), ( l b )  and (5a )  and the boundary 
conditions that the functional dependence of the canonical eigenvalue is 

C" = ~ " ~ ~ , ~ C o s 2 e ; [ ( y - 1 ) / 2 1 ~ ,  qj, ( 7 4  

where IL = ($A2. ( 7 b )  

Thus, at  a given wavenumber, there are three similarity parameters of which we shall 
only vary two, namely, m, and T, (and keep y = const. = (1.4 for the numerical 
results)). There is a remarkably rich structure in this two-dimensional parameter 
space, which we shall study in the formal limit as m, -+ 00, T,  = fixed = 0(1), (y  - 1) 
= fixed = O(l), and K = fixed = O(1) but pcos20 may be arbitrary (including zero). 
The case p cos2 8 9 1 is treated in the main part of the paper and the results for 
,u cos2 8 = O( 1 ) are given in Appendix A. 

Since [$(y-  l)] is fairly small, the full asymptotic structure does not emerge until 
the Mach number becomes quite large (say, m1 > 10). In  an intermediate range, say, 
m, 5 4, T is still of order unity but the coefficient of 9 in (6b)  can still be dominated 
by the 'large' quantity ($, cos8)2 = ,ucos28 in Q when 8 9 $. This suggests the 
limit m, --f 00, &(y- l)] p = O(1) associated with the name of Newton (Hayes & 
Probstein 1966, p. 129). However, it can be shown that the resulting modes would 
then have to be supersonic with respect to both external streams (see discussion in 
§7.3),  and, therefore, could not represent the continuation (to high Mach numbers) 
of the most rapidly growing intermediate-Mach-number modes (Jackson & Grosch 
1988). I n  addition, from the numerical results of Jackson & Grosch, it may be 
inferred that pcos28 remains less than unity (i.e. this quantity is not large) 
for the most rapidly growing spatial modes in this intermediate-Mach-number 
range. Therefore, any sensible asymptotic limit in this range would have to be 
based on m, + co but pcos28 = O(1). This, together with the Newtonian limit 
(i.e. [+(-y-l)]p = 0(1)) ,  provides no simplification at all. Thus, for our flow, it is 
meaningful to consider only the full hypersonic limit : m, -+ co with and (y - 1)  of 
order one. Our results will be valid for all obliqueness angles (including 8 = in). 

The flow develops a multilayer structure in our hypersonic limit, which is outlined 
in figure 1. We now consider each of these layers in turn. 

3. The main shear layer 
The results of Jackson & Grosch (1988) show that as m, + 00 there is a finite range 

of unstable wavenumbers. In  this limit the base temperature profile (5a )  is 
dominated by aerodynamic or viscous (or frictional) heating in the main part of the 
shear layer (where f is sufficiently different from f l )  owing to the large mean 
velocity gradient there. This implies that the coefficient of W becomes quite large in 
(6b) [actually O(m:)] and suggests that this equation can be solved by the WKBJ 
method. 

To make this observation more precise, we must say something about the relative 
magnitude of (f-C"). Since the critical layer moves towards one of the external 
streams (i.e. one of the points f = 1) as m, --f co, we define the main shear layer to 
be the region where (f-6) $I o(1) (see figure 1). 

We consider only the slow mode for which Re ( c )  z U, (or equivalently Re (8) z - 1) 
and show how this analysis is modified (trivially) for the fast mode which is 
characterized by Re (c) e U, or Re (C") = + 1.  Here we use Re ( * ) to denote the real 
part of a complex number and write C" = CAB + it,. Typically, the imaginary part of the 
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eigenvalue is quite small at high Mach numbers; the base flow is only slightly 
unstable. 

The WKBJ solution is of the form 

w = exp k p @ )  for f <fa ,  

$4 = $(a) + p / p  + $(Z)/pZ + . . . . (8b)  

Here p = (+nJ2 % 1 ( 8 4  

(8 4 
with T( ' ) ( f )  = 1 - i ( l -T2)  (1  -f). (8 e) 

where the complex phase, 4, expands as 

and we introduce the notation 

T = - 1)  p( 1 - f 2 )  + T'O'( f ), 

Clearly !Po) is of order unity and represents the effect of the external (i.e. non- 
aerodynamic) heating of the mixing layer. 

After substituting the Rytov transformation, (8a) ,  into the governing equation 
(6b) ,  and using expansions (8b,  d ) ,  we arrive at  O(p2) :  

$(O) = k r y ( f )  df+ $4$'), (9a) 
f 

where 

and f o  will be defined in a moment, and at O(p) : 

where 

and $:), $2) are arbitrary constants of integration at  this stage. These will be 
determined by the analysis which follows. 

A few observations are now in order. First, the present result applies even when 
cos20 = O(p-l) (i.e. for 8 x iz) and can easily be re-expanded in powers of p-l to 
obtain the 'properly' ordered result for this case. Second, the total wavenumber, K ,  

is assumed to lie in the range p-l< K << p ,  and finally c" has not been expanded in 
powers of m, because (f - 6) is bounded away from zero and is O( 1 )  in the main shear 
layer (and the above results can always be re-expanded if necessary to take into 
account the dependence of c" on the Mach number). 

It turns out, however, that c" = - l+O(p- l )  (see $ 6 )  so that as p+m,  the 
derivative of the lowest-order phase, d@')/df = Tg,  will have a simple zero at  

where 

1-v 
f(Y0) = f a  = -1+v> 

For y = 1.4 and 8 = 0, fo = -8. As the obliqueness angle increases, f a  moves to the 
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right along the f-axis and finally moves out of the main shear layer region and into 
the external stream (f x 1) when cos2 6' = o( 1) .  

Therefore, fo = f(yo) is a first-order turning point of the WKBJ solution (see figure 
1) when cos2 8 = O( 1) ; there is no WKBJ turning point when cos2 8 = o( 1) = O(,u-l), 
say, because f o  moves into the high-speed edge layer and the flow there must be 
rescaled (Appendix A). 

In order to bring out the fact that the phase, #O), is almost pure imaginary to the 
right of fo when fo < 1 (and for other purposes as well) it  is convenient to write 

B = exp (iK,u@) for f >fo, (12a) 

(12b)  with 

The WKBJ formalism yields, in the spirit of the previous analysis of this section, 

@ = @(O) + @(l)/p + @(2)/p2 + . . .. 

and 

where @$) are constants of integration and J(f) is defined by (lob). Note that the 
lower limit of integration in (13a) is chosen in such a way that it will be fairly easy 
to satisfy the boundary condition at f = 1 and that G has an integrable singularity 
at this point. 

Thus there are two WKBJ solutions - one for each side of the turning point - when 
fo 4 1 (i.e. when 0 < 6' < in), which are analytic continuations of each other and are 
related by a 'connection formula' across the transition region, f xfo. The nature and 
physical interpretation of this transition region and the corresponding connection 
formula (which is almost classical) will be discussed in $5. This discussion can be 
made rather short if we first find out which linear combination of (13a) may exist for 
f > fo  ; this is done by satisfying the boundary condition at  f = 1.  

4. The high-speed edge layer 
There is a difficulty in the upper external stream with WKBJ solution, (13c), 

because the integrand has a ( - t )  singularity at f = 1. Physically, the problem arises 
from the fact that aerodynamic heating is unimportant in the external stream (a 
uniform flow) so that the basic premise which guarantees the existence of the WKBJ 
solution in the main layer is violated. Therefore, this solution cannot aatisfy the 
boundary condition at f = 1.  

The base temperature profile, (5a) ,  clearly reveals the difficulty mathematically ; 
although p = is large, (1 - f 2, is small near f = 1. This observation suggests the 
introduction of a scaled edge-layer coordinate 

t 
,u 
-=  1-f, 

where the edge layer is defined by 6 = O(1) (see figure 1). In this layer (f -6) = O( 1). 
A similar rescaling was used in the hypersonic boundary-layer analysis of Cowley & 
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Hall (1990). One might suppose that there is another edge layer (of the type we shall 
be describing in this section) in the low-speed stream, near f = - 1 ; this supposition 
is incorrect because the latter contains the critical layer and the flow behaves quite 
differently there. 

In order to  re-express the governing equation, ( 6 b ) ,  in terms of the upper edge- 
layer coordinate, 6 ,  we note that the temperature distribution may be written 

T = TLo) + T(')/y, ( 1 5 4  

where 

and a direct substitution of (15) into the quantity Q, ( l b ) ,  yields 

Q = K 2 [ / 1 ~ p  cos2 e(i - c")z - T L O ) ~  - ~ ( 0 )  cos2 e + o(p ) ] ,  
Q(0) = 2TLO) ( 1  - 6) 6 - T(1) (1 - 6)z.  

( 1 6 4  

(16b) where 

Therefore, the governing equation, ( 6 b ) ,  may be written in terms of the edge-layer 
variable and the above expansions as 

d2W 1 
-+-{ ~ K ~ T ~ ~ ) C O S ~ ~ ( ~ - I $ ) ~ +  l - ~ z T ~ o ~ z + ~ ~ o ~ c o s z ~ + O ( ~ ~ l ) ~ W  = 0, (17a)  dp 4.52 

(17b) where 

by the WKBJ method. After writing 

C p )  = - Kz[Q'o' - .5TiO'( 1 - 4 2 1 .  

The presence of the large parameter ,u = ($nl)z implies that (17 a )  may be solved 

B = exp (i,dUl, (18a) 

and expanding y = P O )  + y(uct)/$+O(p-1) (1W 

Y(0) = & F ( t ) ,  (184 

we find in a straightforward manner that the lowest-order phase is 

where 

The next order correction to  the phase, given by the classical result 

arises because our dependent variable is W (rather than p ) ;  for the pressure the 
correction to the phase at this order is zero as may be seen from ( 1 )  by considering 
the solution at y = + co. The term in the curly brackets of (18d) behaves as 
[log [+ const. + O(()] as t+ 0, or as (-2y+ const. +exponentially small terms) as 
y+ + co. Therefore, in order to satisfy boundedness in the upper uniform stream, 
we must take the upper sign in (18c) for unstable temporal modes (tI > 0, k > 0);  
for unstable spatial modes this choice must also hold by analytic continuation. 
Putting these results together, we find that a t  large Mach numbers the solution in 
this edge layer may be written 

(19) W = exp [iy%'-$log (dF/dt) + O(p-;)]. 

We emphasize that (19) satisfies the correct boundary condition at 6 = 0 (orf = 1 or 
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y = + a) and that the arbitrary constant of integration in the phase has been ignored 
because the (complex) amplitude of an instability mode is arbitrary, and this 
integration constant may be absorbed into the amplitude. 

There remains to show that our edge-layer solution, (19), matches (in an 
asymptotic sense) with the solution in the main layer in the region f > f , .  Since the 
procedure is mostly algebraic, we omit the details. There are, however, a couple of 
points worth noting. First, because the edge-layer solution consists of a single 
exponential, it appears likely that only one of the WKBJ solutions in (13) is needed. 
We write the required solution (with hindsight) as 

where, in order to succeed with the asymptotic matching, we must allow @?) = O(1) 
to  depend on logp. 

In  order to carry out the matching (Van Dyke 1975, p. 93), we recall that both 
integrands in (20) are singular as j+ 1 ,  and we must first peel off this singularity in 
order to find the outer limit of (20) ; this is what produces the fractional powers of p 
in (19). The final result is 

with 

and j(0) = '(5-0). This asymptotic matching shows how the boundary condition at 
f =  1 is transmitted to the main layer through the intervening edge layer. 

We now have a solution that satisfies the correct boundary condition (for any 6 
a t  this point) in the upper external stream and is valid almost all the way to the 
turning point, f = f o  (see figure 1). In  the following section we shall develop the 
connection formula across the turning point which will provide the relationship 
between the two sets of WKBJ solutions in the main layer; (8a)  and (12a). Note, 
however, that implicit in our derivation in this section is the assumption ,LA cos2 8 B 1 
(see (17a)). When the instability wave is very oblique (i.e. ,ucos2B = 0(1)), the 
transonic region and the high-speed edge layer fall on top of each other and a 
different solution to  (17 a) must be sought ; this is done in Appendix A. Physically 
speaking, in this case the flow over most of the shear layer behaves subsonically 
(because of the 'sweepback' effect due to obliqueness) and it is only in the upper 
external stream where the flow may become supersonic (relative to the instability 
wave). Actually, even if the flow remains subsonic in the upper stream (e.g., 0 = in), 
an extra layer is required because the main WKBJ solution, ( lOa) ,  becomes singular 
a t f =  1. 

5. The transonic layer 
Consider the case f o  < 1 (i.e. 0 + in) so that the transonic layer or the WKBJ 

turning point lies in the central part of the mixing layer. In  order to explain the 
structure of the relevant eigenfunction, we first summarize our results for the slow 
mode (whose phase speed is approximately U,; figure 2 )  in physical terms. The 
relative Mach number, (U,  -c,)/a, k ( U l -  U 2 ) / a ,  = m,, is largc so that for y > yo = 



596 T .  F .  Balsa and M .  E .  Goldstein 

tanh-lf,, the flow relative to the instability wave is highly supersonic. Since the 
growth rate is very small, this supersonic flow is essentially steady in the reference 
frame of the instability mode ; thus it is characterized by Mach waves which lie nearly 
parallel to the x-axis. The vertical distance, d ,  between ‘successive ’ Mach waves is 
O(A/m,) which is assumed to be small with respect to the cross-stream lengthscale of 
the base velocity profile (which is O( 1 ) ) .  The characteristic wavelength of the 
disturbance is denoted by A. Therefore, as we traverse the flow in the (+y)-direction 
in this upper region, we encounter a series of Mach lines separated by a small distance 
d ;  in mathematical terms this is represented by the rapidly oscillating WKBJ 
solution (12). For an unstable mode, the strength of the Mach waves actually decays 

On the other hand, in the lower region y < y o ,  the relative Mach number, 
(cR- U2) /a2  x (U2-  U2) /a2  = 0, is quite small so that the flow there is nearly 
incompressible and is characterized by exponentially growing and decaying solutions 
(as opposed to oscillatory solutions; see (8)). Clearly, in an intermediate region 
around y = yo (or f = f,), the flow must change from an oscillatory one to an 
exponential one (see figure 1);  this occurs in the turning point region of the WKBJ 
solution or, physically, in the transonic region that bridges these high- and low- 
Mach-number flows. We next analyse the characteristics of this transonic layer. 

slowly. 

Introduce an inner variable 
( 2 2 4  

fo -f v=-- j - ,  

where 7 = 0(1) in the transonic layer and 6 is its characteristic thickness. Observe 
that the largest term in the coefficient of W in (6b)  is O(T2) = O(p2) in the main layer, 
and this implies the scaling, in analogy with the classical turning point problem 
(Nayfeh 1973, p. 336), 

6 = p s  = (+,)-~ < 1 .  

After writing (6b) in terms of this inner variable and expanding its coefficient in 
Taylor series about 7 = 0, we arrive at 

where 

d 2 9  - + [ -A7 +@B+ O(p-;)] W 
dv2 

(Y - 
1 - f i  ’ 

A = const. = $?----- 

B = const. = K ~ J ( ~ ~ ) ,  

= 0, 

with J defined by (lob) and fo denoting the turning point, ( 1  1 ) .  The present turnin4- 
point problem is distinguished from the classical one by the presence of the O(y-5) 
term in (23a);  this arises from the fact that, in the main layer, the coefficient of W 
in (6b)  also contains a term of O(p).  Since the growth rates are small, K~ is almost 
(pure) real and positive and the rest of the analysis in this section is carried out with 
this limitation in mind (so that we do not have to treat (23a)  as an equation in the 
complex 7-plane and worry about Stokes lines). It should be noted, however, that our 
results are valid throughout the region Re ( K )  > 0; in a narrow boundary layer of 
thickness O(p- l )  in vicinity of the imaginary axis our results fail for one of two 
reasons. If Im ( K )  = 0(pu-l)  (i.e. the total wavenumber is approximately zero), K ~ T ~  is 
no longer large and we essentially have the theory of Cowley & Hall (1990), while for 
Im ( K )  = O( l) ,  the asymptotic expansion of (23a)  for large 7 differs from the one we 
shall employ because of the presence of Stokes lines when K = iK1 = pure imaginary. 
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To solve the governing equation, (23a), in the transonic layer, we write the two- 
term solution 

and find 

where Ai and Bi are Airy functions in the notation of Abramowitz & Stegun (1970, 
p. 446). Based on our previous remarks, A = const. is (almost) real and positive and 
the $-power in (24b) is given by the usual cube root; [a(o),/3'o)] are constants. d) 
obeys an inhomogeneous Airy equation (the forcing terms are Airy functions) whose 
particular solution may be found by the method of variation of parameters. This 
solution is needed to carry out the asymptotic matching with the WKBJ solutions 
in the main shear layer to the order of accuracy to which the latter are written ! A 
particular solution, a$), and its asymptotic behaviour for large 171 is given in 
Appendix B. We next write the two term solution in the transonic layer as 

@') = a ( 0 )  Ai (yA4) + p ( O )  Bi (yA;), (24b) 

9 = a('')[ 1 +p,-&-a'$)] Ai (?A$) +p(o)[ 1 +y-4,9(8] Bi (?A%) +p,-tg$ (25) 

with the understanding that do) and are of the same order; a(;) = 0(1) and 
pCi) = O(1) are constants. With the help of Appendix B, we match this two-term 
transonic solution to the two WKBJ solutions in the main shear layer to determine 
some of the constants of integration in (9) and (10). The final results are 

$?) = - i r C ( f ) d j ' ,  (264  

where is defined by (21a). Note that there is no special significance of the zero 
in the lower limit of the integral in (26b) and, in fact, it may be replaced by any other 
(convenient) point provided that this is done in all the lower limits which are now set 
to zero. 

Tacit in our derivation is the fact that any oscillatory solution in the supersonic 
region can only, be matched onto an exponentially growing solution (as f -+ - 1 )  in the 
subsonic regime ; the 'amplitude ' of the exponentially decaying solution is not 
determined by our (or the classical) connection formulae. In other words, these 
formulae are directional in character in the sense that the validity of the right-hand 
sides of (26) imply the validity of the left-hand sides (but not conversely) ; therefore, 
the equal signs in (26) should really be replaced by arrows pointing to the left to 
remind us of the one-way nature of these formulae (Kemble 1935). For this reason 
the integration constants $!) ( i  = 0 , l )  in (9a) and (10a) cannot be determined by the 
matching across the transonic layer. 

For completeness we also give the flow field in the transonic layer by quoting 
expressions for the relevant coefficients 

where 

and [a($), p(;)] are (unfortunately) undetermined at this order of matching. 



598 T. F. Balsa and M. E. Goldstein 

6. The low-speed edge layer (critical layer) 
We have now shown that the dependent variable, W, ultimately exhibits 

exponential growth asf+ - 1 in the main shear layer for all f,, 6 1 (,f = f ,  defines the 
location of the transonic region). 

It is clear that the subsonic WKBJ solution cannot satisfy the boundary condition 
W = 0 at  f = - 1 and another boundary layer has to be inserted in the vicinity of 
f - 1 (see figure 1). This layer contains the critical layer whose importance in 
stability theory is well known (Betchov & Criminale 1967; Drazin & Reid 1981). 

As in the case of the high-speed edge layer (§4), the base temperature profile, (6a), 
suggests the scaling 

(28 )  
C 
-=  l+f, 
P 

where 5 = O(1) defines this layer whose width is O(p-l).  Since the canonical 
eigenvalue c“ z - 1, (f- 6) = [ [ / p  - (1 + c ” ) ]  will be small in this layer, and we must say 
something about the relative magnitude of this quantity. 

We do this by specifying the behaviour of e as a function of p. The natural 
expansion 

of the eigenvalue, in terms of the Mach number, leads to a self-consistent theory. The 
dcpendent variable 92 expands like 

c“ = -1+(T/p+O(p-2); (T = O(1) (29) 

w = Wp + O(p-1). (30) 

Substituting (28) to (30) into Rayleigh’s equation, ( 6 b ) ,  and collecting coefficients 
of like powers of p, we obtain the lowest-order edge-layer equation 

where T p  = T2+(y-1)C. (31 b )  

In  order to satisfy boundary conditions at C = 0 and to perform the matching with 
the WKBJ solution, we must examine the solutions of (31a) for small and large C. 
When C + O ,  

which has the solutions Cn*, where 
n, =a( lk~T, ) .  (33) 

It therefore follows from ( 5 b ) ,  (6a) ,  (28), (29) and (33) that 

p - ~49 - g + ~ T z / 2  - e*KTzu as C + O  (01 y-f- 00). (34) 

This shows that 9;’) can be made to satisfy the proper (i.e. decaying or ‘subsonic’) 
boundary condition a t  5 = 0 (or y = - 00)  by choosing the plus sign in (33) so that 
we must set 

(35) 

The lower sign in (33) is inadmissible. 
In our numerical calculations we enforce a strong version of (35) by requiring the 
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difference between the analytically and numerically calculated values of 9;') to be of 
order in the vicinity of 5 = 0. In other words, in the numerical procedure, we 
actually specify how 9f') tends to zero in the lower external stream; this is done to 
exclude the term en- which may also vanish as c + O  for small K T ~ .  

We call 92:'' the one-term inner (i.e. low-speed edge-layer) solution. The two-term 
outer expansion of this in terms of the main layer variable, f = c/p- 1, is readily 
deduced from (31 a )  by re-expressing this equation in terms off, and then solving the 
latter equation to two-term accuracy as p + 00. The final result, re-expressed in terms 
of the edge-layer variable, 6, is 

&?Lo) --f exp [ - ~ t ( y  - 1) ( 5 - p )  - $d"'(log 5- log p )  + E-1, (36) 

where 6- = €-(/A) = const. Now (36) must match with the one-term inner expansion 
of the two-term WKBJ solution, (8), (9) and (10). This is indeed the case; the 
algebraic details, which are needed to determine E-(,LL),  are relegated to Appendix C. 
Note that in (36) we retain only the exponentially decaying solution coming out of 
the low-speed edge layer (as 6- C O )  because it is only this solution that matches with 
the exponentially growing WKBJ solution (as f + - 1 )  present in the main layer. 

A most interesting result of our analysis is that the scaled eigenvalue (T (recall 
6 = - 1 + cr/p+. , .) is determined entirely by the low-speed edge layer; specifically 
(31a), boundary conditions (35) as [-to and (36) as 5 - f ~ .  The last boundary 
condition states that the lowest-order solution in the low-speed edge layer decays 
exponentially as we move into the main shear layer. The eigenvalue problem has now 
been completely decoupled from the behaviour of the eigenfunction in the rest of the 
shear layer because of the homogeneous boundary conditions associated with B~'). A 
similar decoupling was found by Cowley & Hall (1990). The instability is, therefore, 
entirely dominated by the base flow in the vicinity of the lower external stream (for 
the slow mode). 

7. Discussion and conclusions 
An interesting result of our asymptotic theory is a simple high-Mach-number (i.e. 

hypersonic) similarity rule for instability waves in a mixing layer. This will be 
derived in $7.3;  we begin our discussion with more general remarks and numerical 
results on the instabilities of compressible mixing layers. The latter are given for our 
base velocity profile with U,  = 1 and U, = 0. 

A secondary purpose of this paper is to  discuss certain results relating to mode 
splitting and obliqueness. These results are not based on our asymptotic theory; they 
are obtained by numerically solving the full Rayleigh equation (at any Mach 
number). This numerically oriented study provides the explanation for the presence 
of the slow and fast modes (which are essential to our high-Mach-number asymptotic 
theory) and elucidates the role of oblique modes over a very large range of Mach 
number (much larger than what exists in the literature). 

7.1. Mode splitting and Miles' theory 

For two-dimensional modes (8 = 0) in an isothermal mixing layer (5"' = l), the 
critical Mach number, m:, introduced by Jackson & Grosch (1988) is m: x 1.84. 
There is one unstable mode, whose phase speed is U,, = t (U,  + U'), when m, < m:. On 
the other hand, for m, > mT there are two unstable modes. We remark that the range 
of (unstable) wavenumbers and the maximum growth rates become increasingly 
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FIGURE 3. (a) Growth rate and (b )  phase speed as a function of wavenumber. m, = 2, = 1 ,  
0 = 0;  -, fast mode; ----, slow mode. 

smaller as the mixing layer becomes more compressible in the Mach-number range 
m, < m:. For reference, in the incompressible limit, the maximum temporal growth 
rate is 0.0949 and the range of unstable wavenumbers is the interval (0 , l ) .  

A typical result for the growth rates associated with the slow and fast modes is 
shown in figure 3(a) .  Because the base velocity profile U-Urn = iAUtanhy is 
antisymmetric in y, both the slow and the fast modes have the same neutral 
wavenumber. For m, 2 2 ,  the segment A’B’ of the slow mode starts a t  the origin, 
while for m: < m, < 2 ,  the point A’ is a t  a finite positive wavenumber. Thus, for 
m, 2 2 we have two modes a t  vanishingly small wavenumbers (i.e. in the vortex- 
sheet limit) ; one of these is unstable (or possibly neutrally stable a t  sufficiently large 
Mach numbers - see discussion below) and the other is always neutrally stable. On 
the other hand, for m, < 2 we have one unstable mode at very small wavenumbers 
because A‘ is at a finite wavenumber. This agrees with the findings of Miles (1958), 
whose vortex-sheet result for the unstable mode is also indicated in the figure. We 
note that for Mach numbers less than the critical one, the slow mode disappears and 
the five points B, C ,  A’, B ,  and C‘ are coincident a t  the neutral wavenumber. At  m: 
these points split apart to form a configuration whose general features are shown in 
figure 3(a ) .  

For both the slow and fast modes the phase speed (figure 36) is cE = Urn = 0.5 
when the wavelength is fairly long ; evidently instability waves of this type feel the 
entire mixing layer and adjust their phase speeds accordingly (which, in this 
example, is Urn by antisymmetry). On the other hand, when the wavelengths become 
shorter, only part of the mixing layer is felt by the wave ; therefore, instability waves 
with different phase speeds may be sustained by different parts of the mixing layer. 
Note that the phase speed of the neutral mode does not coincide with the fluid 
velocity a t  the (generalized) inflection point (which, by symmetry, is a t  y = 0). 
Therefore, we have irregular neutral modes ; these are obtained as limits of unstable 
modes as their growth rates tend to zero. 

As the Mach number is increased, the segment AB, along which the phase speed is 
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FIGURE 4. Growth rates at two Mach numbers. T' = 1 : -, 19 = 0 ; ---, 20" ; . . . . ., 40" ; 
, 80". _._._ 60". 

1 ,  

equal to the average shear-layer speed, decreases in length, and at m, = 22/2 the 
point B reaches the origin (figure 4a shows the geometry for the growth rate just 
before this happens). For even larger Mach numbers, the section AB is absent 
altogether (i.e. the growth rate curve no longer has two local maxima) and the slope 
a t  the origin is zero. This is again consistent with Miles' vortex sheet theory which 
predicts stability above a Mach number of 2 4 2 .  

We are now in a position to generalize the above remarks to heated mixing layers 
and to oblique modes. The main effect of external heating is the elimination of the 
perfect antisymmetry in the base flow. For example, the slow and the fast modes now 
have different neutral wavenumbers and the sharp corners (at B = B of figure 3) 
become gradually changing curves. Essentially, curves BC and BC' separate. Since 
the Mach number (i.e. m:) a t  which the second mode emerges is quite close to the 
Mach number a t  which the growth rate curve of this mode intersects the origin (i.e. 
1.84 versus 2 for isothermal flows) we propyse the latter as a rule of thumb for the 
former. Thus, after Miles (1958), rn: x 1 + T i ;  a simple result which agrees quite well 
with the (limited) numerical calculations of Jackson 6 Grosch (1988). Our formula 
for m: implies that at this point (U, -cR)/al = (cR - U,)/a, = 1. 

It is important to realize that all of our previous discussions are also relevant to 
spatial modes. As with external heating, spatial modes eliminate the perfect 
symmetry of the base flow ; the various singularities (i.e. sharp corners) associated 
with temporal modes become smooth because, for spatial modes, these singularities 
are ' continued ' into the complex wavenumber plane. A comparison between spatial 
and temporal calculations is shown in figure 5 ;  the fast mode in both calculations 
exhibits a 'camelback' shape which has its origin in the mode splitting shown in 
figure 3(a ) .  

A more quantitative comparison between these spatial and temporal calculations 
(figure 5) yields the following results. For the fast mode, the maximum temporal 
growth rate is 7.93 x at k x 0.149. Via the Gaster (1962) transformation, the 
corresponding spatial growth rate is 1.04 x top2 a t  a frequency of 0.102. The 
respective numbers for the slow mode are 2.75 x a t  
-q x 4.2 x lo-,. It is seen that the Gaster transformation gives remarkably 
accurate results ; the only difficulty is that in the spatial case, the maximum growth 

a t  k w 0.078 and 6.5 x 
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FIGURE 5.  Compariaon of ( a )  spatial (Jackson & Grosch 1988) and ( b )  temporal growth rates. 
m, = 2.5,  T,  = 2 ,  0 = 0 :  -, fast mode; ----, slow mode. 

rate of the fast mode is still dominated by the first hump (but only slightly so). This 
is because for this combination of Mach number and temperature ratio we are still 
quite close to  ?ode splitting, which, according to  our approximate formula, occurs 
at mT = 1+Ti z 2.41. 

Note that when the symmetry of the base flow is broken (i.e. heating or spatial 
modes) the first hump (see AB of figure 3 a )  need not disappear when the growth rate 
curve of the slow mode reaches the origin. This is because B and 23' are generally 
separate points. 

7.2. The effect of obliqueness 

It is known that oblique modes frequently have the largest growth rates in 
compressible mixing layers (Gropengiesser 1969 ; Jackson & Grosch 1988). This 
is physically plausible because there are two distinct effects associated with 
obliqueness : (i) a general reduction of maximum growth rates (as in incompressible 
flows) because the effective base velocity difference, which induces the instability, 
becomes smaller by a factor of cos 8, and (ii) the effective Mach number also changes 
by this factor owing to the 'swept leading edge' of the instability wave. Since 
incompressible waves are usually more unstable than compressible ones, the second 
effect may completely offset the first one; the net result is the presence of a distinct 
oblique mode with the largest growth rate (figure 46). 

At moderate Mach numbers (say, m, 5 4, when the variations in aerodynamic 
heating are unimportant owing to the small +(r - 1) factor in (5a ) )  the principal effect 
of obliqueness is to change the effective Mach number to m, cos 8 (from m,) because 
of the 'sweep' of the phase fronts of a mode. In  figure 4(6), for 0 = 0, we see 
something very similar to that discussed in the previous subsection (the inset shows 
the behaviour and the zero slope very near lc = K = 0);  while for 8 = 60" (ml cos8 = 
2 )  the results remind us of those in figure 3 (a) and, a t  8 = 80°, (m, cos 19 = 0.69) we 
see the familiar inverted U-shape that characterizes the instability of low-Mach- 
number flows. 

The situation is, however, far more intricate, especially a t  higher Mach numbers 
where aerodynamic heating plays an important role. For example, for m, = 8 and 

= 1 ,  a wide range of oblique waves (0 Q 0 Q 60") has roughly (within 3%) the 
same peak growth rate (figure 6 a ) .  Furthermore, one of the principal results of our 
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FIGURE 6. Growth rates of oblique modes: (a) m1 = 8, T, = 1 ; (b)  m, = 4, T, = 0.2: -, 0 = 0 ;  
- ~ _ _  , 20"; ....., 40"; -.-.-, 60": , 80". 

asymptotic theory is that at even higher Mach numbers two-dimensional modes 
(with 0 = 0) are the most unstable (see $7.3).  

This entire discussion on the behaviour of oblique modes is dependent on the 
temperature ratio, T,. As seen from figure 6 ( b ) ,  in t'he presence of a substantial 
heating of the fast stream (at y = + 00)  (or a cooling of the slow stream a t  y = - co), 
even at moderate Mach numbers we have a wide range of oblique modes with roughly 
the same maximum growth rate (within 8%). Therefore, one must interpret with 
considerable caution one of the principal conclusions of previous investigators, such 
as Jackson & Grosch (1988) who state: 'we also find, in agreement with previous 
studies, that the maximum growth rate for any T,  and m, occurs for three- 
dimensional modes '. 

7.3. High-Mach-number similitude 
The preceding discussion indicates that  the instability of supersonic mixing layers is 
quite subtle, and an asymptotic theory can be of great help in clarifying the physics. 
Although the analysis leading to our asymptotic theory is fairly involved ($$2-6), its 
main results, in the form of a 'hypersonic' similarity law, are extremely simple. 

After performing an afine transformation on the low-speed edge-layer equation, 
(31 a) ,  and the associated homogeneous boundary conditions, it is a simple matter to 
establish 

(37a) 
T,  

Y-1 
= p( 1 + c " )  = - - - . ~ ( K T ~ ) ,  

where the 'universal' (complex) dispersion relation, 23, is a function of one argument 
only, say K = K T Z .  Therefore, the eigenvalue of the slow mode (subscript 2 )  is, via 
( 2 b ) ,  

c = c2 = U,+gAO T,  %KT') ,  (37b)  
( Y - 1 ) P  

whose temporal growth rate scales as 

(kc,), = $A&' cos 0 KT2 B 1 ( K q ) .  
(Y-1)P 

( 3 7 4  

The real and imaginary parts of 9 = &BR + ig1 and the universal growth rate curve, 

20 FLM 216 
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FIGURE 7. Universal dispersion relation: (a) real part, ( b )  imaginary part, (c) growth rate. 

KQ1(K), are shown in figure 7 .  These were calculated numerically by solving (31a) 
subject to the homogeneous boundary conditions (35) and (36). For each k ,  this 
problem only possesses a solution for a single complex value of (T, which was 
determined as part of that solution. We omit the details of our numerical procedure. 
Note that (31 a )  is, in general, non-singular because (T is, in general complex. We refer 
to (37b, c) as our hypersonic similarity law. 

A large number of very interesting conclusions may be deduced from this law. 
Possibly, the most important one is that the eigenvalue of the fast mode (subscript 
1) is 

where the (") denotes complex conjugation. The temporal growth rate of the fast 
mode is also given by (37c) with T,  replaced by unity. 

This is because both the fast and the slow modes are localized to the critical layers 
near y = & 00 (or f = & l),  respectively. In these two narrow regions the shapes of 
the base flow profiles are identical, except for a scale factor, namely T,, arising from 
the Howarth-Dorodnitsyn transformation (i.e. Y +  y as y+ + 00 but Y - t  T,  y as 
y+  - 0 0 ,  ( 3 4 ) .  The presence of this scale factor in the lower stream explains the 
rescaling of the wavenumber by this same factor for the slow mode ( 3 7 b ) .  
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Slow mode (denoted by subscript 2) 
(i) The neutral wavenumber, K,, and the wavenumber at the maximum growth rate, K,, 

(ii) the relative speed between the neutral wave and the external stream, U,, is 

(iii) the maximum growth rate is independent of the temperature ratio but varies as A-’. 

scale with Ti1. The factors of proportionality are 0.5 and 0.13 respectively (figure 7c);  

proportional to T J A  ; 

Fast mode (denoted by subscript 1) 
(i) The characteristics of the fast mode are independent of the temperature ratio, T,; 

(ii) the relative speed between the neutral wave and the external stream, U,, is 
proportional to A-l; 

(iii) as (iii) for the  slow mode. 

TABLE 1. Hypersonic similitude 

Clearly, a t  high Mach numbers, the slow and fast modes are related (i.e. they are 
both governed by the same dispersion relation) and are equally important because 
they have the same temporal growth rates. This is in contrast to the situation at  low 
supersonic Mach numbers (figure 5 )  where one of the modes is usually more unstable 
by a significant amount. 

Equation ( 3 7 a )  implies that the product [ ~ ( y - l ) ]  remains constant a t  fixed K 
and T,. We therefore expect that in the strict Newtonian limit, y- 1 = O(p- l ) ,  u may 
become ‘large’. This suggests that will be substantially different from unity for 
p % 1 and, consequently, that the phase speed of the resulting instability wave (if 
one exists) will be supersonic with respect to both external streams. 

There are two distinct ways of using these similarity laws. The first way is to use 
(37b)  and ( 3 8 ) ,  together with figure 7 ,  to predict the eigenvalues, while the second 
way is to compare the characteristics of the slow and fast modes. 

It is possible to draw a large number of conclusions from the hypersonic similarity 
law and we give a partial list in table 1 (without proof). Note that (37c )  clearly 
shows that the most unstable temporal mode is a two-dimensional one and that the 
important large parameter is A’ = [ (y-  l ) p ]  and not simply p. 

The neutral wavenumbers of the slow and fast modes and their respective phase 
speeds are related by 

( K I A  
( K I A  = - 

T,  

and 

or more generally 

(39 b)  

( 3 9 4  

so that (39c)  establishes a scaling rule for the temporal growth rate of one of the 
modes in terms of the other, where (kcI) l (K)  denotes the growth rate of the fast mode 
at wavenumber K (this growth rate is independent of T2). 

Finally 
( 3 9 4  

so that the effect of the temperature ratio for the slow mode may be scaled out 
through the wavenumber. 

For the sake of brevity, we do not check here the detailed accuracy of all these 
facts. However, the overall accuracy of the asymptotic theory can be assessed by 
examining a particular set of results from Jackson & Grosch (1988) in the light of 

20-2 



606 

1.0 

K. 

0.5 

T. F .  Balsa and M .  E. Goldstein 

(4 1.0 - ! 

- :, ---- 

t.. Icn +__.---- 

__.--- __.-- 
_--- .*.. _.--- ..___-- ---- - 

0 0.8 I .6 0 1 .o 2.0 
K K 

FIGURE 9. Comparison of numerical results and asymptotic theory (0 ,  D): (a) m, = 16, 
= 0.3, ( b )  m, = 8,  T2 = 0.2. -, 8 = 0 ;  ----, 20'; ....., 40"; -.-.- , 60": -----, 80". 

(39a), see figure 8. These results qualitatively confirm the ratio expressed by (39a) 
although the Mach number appears to be too low for a good quantitative 
comparison. Our asymptotic theory (dashed lines) requires that the other curves 
should eventually level off. 

A more detailed comparison (in the spirit of a prediction) is shown in figure 9. We 
use figure 7(c )  and equation (37c) to compute the maximum growth rate and the 
corresponding wavenumber, K,. These ordered pairs are indicated by the large dots 
in the figure, and the arrows show the curves to which the dots belong. The neutral 
wavenumber of the asymptotic theory is marked by a solid square. 

The asymptotic theory clearly works well at very large Mach numbers for 
(strongly) oblique waves. A decrease in the temperature ratio, T,, also results in 
better agreement. In  spite of this lack of extensive quantitative agreement a t  lower 
Mach numbers, the hypersonic similarity law provides a number of useful rules of 
thumb and points to the direction for improving the theory. 

In an attempt to understand more clearly the limitations of our asymptotic 
theory, we have carried out an (unpublished) and more involved analysis which 
shows that the accuracy of our theory hinges on 'transcendentally ' small terms. The 
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scaled eigenvalue, u, is not truly independent of Mach number, but depends on i t  
through a parameter B which has the form 

= exp[-Kp(y- 1) r ( e ) + o ( i o g p ) l  (40) 

and, of course, vanishes in the true limit as p+ GO. Here V(0) is a monotonically 
increasing function of the obliqueness angle 8 ; its value a t  8 = 0 is 0.24. Through (40) 
we can clearly see why the asymptotic theory improves as K or 8 increase (see figure 
9) ; we can also see that B is quite different from zero even when m, = 10. We chose 
not to present this more involved analysis because, once the dependence of u on 9 
is retained, the hypersonic similarity law is lost (and our main goal is to elucidate the 
physics rather than to provide a slightly simplified and approximate method for the 
calculation of the eigenvalues a t  moderate to high Mach numbers in place of the 
Rayleigh equation). 

7.4. Spatial instability 
The spatial growth rates for the slow and fast modes may be deduced from the 
temporal dispersion relations, (37 b )  and (38), by continuing these into complex 
wavenumber space. For example, for the slow mode, we find 

where w* is the (real) given radian frequency of oscillation of the mode. The solution 
of (41) for the complex total wavenumber, K = K(w,) ,  may be, obtained by successive 
iteration whenever lU21 9 O ( p - l ) .  After substituting 

I P  + 0(K2)  (42a)  = K ( o )  + 

into (41) and expanding in and collecting like powers of p, we arrive a t  

and 

K(O) = ~ "* = real u2 cos 8 

The same results apply to the fast mode provided that U, is replaced by U,, 9 is 
replaced by (-&), T,  is set to unity and K is replaced by 2. Clearly (42b) establishes 
a direct proportionality between the lowest-order axial wavenumber, K(') cos 8, and 
the frequency w*,  and (42c) expresses the lowest-order spatial growth rate in terms 
of the temporal one (which is very reminiscent of the Gaster 1962 transformation). 

The key point is that (42b, c) are valid as long as the relevant external stream 
velocities are sufficiently different from zero; for the fast mode (say, U, = 1) the 
spatial growth rate always decays as p-l. The last remark also holds a t  large enough 
Mach numbers for the slow mode provided that U, + 0;  in this case the important 
frequency which determines the spatial growth rate is ( w * q )  and the maximum 
growth rate is independent of the temperature ratio. 

The situation is very different for the slow mode when U2 = 0;  roughly speaking, 
(42c)  suggests that as U ,  + O  the spatial growth rates may become quite large. First, 
note from (41) that, for spatial instability the range of unstable frequencies will 
shrink to zero as p-l, and whenever the frequency lies in this narrow range, KE = 
O(1). Thus, the maximum spatial growth rate scales as cl, so that indeed large 
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growth rates are possible especially when the upper stream is heated. We remind the 
reader that these conclusions hold for U 2  = 0 only, and explain why the slow and fast 
modes in Jackson & Grosch (1988) behave so differently a t  large Mach numbers even 
when = 1. 

Our asymptotic theory also reveals that the dominant spatial instability a t  large 
Mach numbers is very sensitive to the precise value of U2( z 0) ; significant changes 
in the growth rate can be obtained by changing ( U 2 p )  = tJ2(&nJ2 by an O(1) 
amount. This could have important consequences for experiments (conducted in a 
finite-size facility), 

Finally we briefly explain what happens to the low-speed edge-layer equation 
when the canonical base velocity profile, f ,  is given by an arbitrary function. For 

(43) 
example, if 

f - - 1 +aexp ( -by2) + . . . 
as y + - co (for suitable constants a and b)  we can still write c" = - 1 + u/,u + . . . and 
determine u by a slightly modified version of the low-speed edge-layer equation (31a) 
provided that K~ is allowed to grow as logp. Evidently, for this type of velocity 
profile, the range of unstable wavenumbers weakly increases with Mach number; for 
the tanh profile this range is finite. 

The amplitude of a disturbance must be quite small in order for linearization to be 
valid in hypersonic flows. Since u is in general complex, (31a) does not, in general, 
possess a critical layer for real values of 5 even though the actual growth rate of the 
instability wave is itself small. We therefore expect nonlinearity to come into play 
everywhere in the low-speed edge layer once the instability wave amplitude is 
sufficiently large. 

One of us (T.F.B.) is grateful for the hospitality provided by the NASA Lewis 
Research Center during his sabbatical year when this work was done. Interactions 
with Dr Lennart Hultgren have been most valuable; we are also deeply indebted to  
him for sharing with us his knowledge of the computer facilities a t  NASA Lewis and 
some of his programs. 

Appendix A. Solution in the high-speed edge layer for very oblique waves 
When the instability wave is only moderately oblique (so that pcos20 9 l), the 

transonic region is separated from the high-speed edge layer by a supersonic region 
in the main shear layer (figure 1). This case was discussed in $ 4 ;  the purpose of this 
Appendix is to describe the solution for very oblique waves for which p cos2 0 = O( 1). 

In this case (17a) is rewritten, with the help of (15b) ,  

where we have put 7 = [l-,uC0820(1-c")2]f (A 2) 

and the branch of the square root is chosen so that the imaginary part is positive 
when the real part of the argument is negative. 

This equation has the solution 

3 = 61/2(1+") e-1/2"(Y-1)E ,F&( 1 + K7) + ~ K ( T ~  4- 1) ; 1 4- K 7 ;  K(Y - 1) 61, (A 3) 

where 'F, denotes the confluent hypergeometric function in the usual notation 
(Abramowitz & Stegun 1970, p. 504). It follows that 

as E + O  ( o r y - t f c o )  (A 4) LJ$ - 61/2(l+m) e-?4(1+KT) 
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so that W satisfies the proper (possibly ‘subsonic’) boundary condition at y = + co, 
and that 

where r denotes the Gamma function. The re-expansion of (8a )  to (9b)  with fo = 1 
for constant p cos2 8 = O( 1) yields 

&? = eXp pK$(Y - 1) ( 1 -f ) - 4 log [i(r - I)]  4- - 1 L&( f ) df+ K,!&y) -k K i l t )  1, K f  

Y-1 0 

(A 6) 

(A 7) 

{ 
where we have put 

J O W  = 2( ’- 1 - f 2) cos2 O(f- C^f2 - 2T(O)] 

and !Po) = F0)( f) is defined by ( 8 e ) .  I n  (A 6) &’) and &) are suitable constants of 
integration which are determined by the asymptotic matching of this special edge- 
layer solution (A 3) with the WKBJ solution in the main layer (8) ; this comes about 
by equating (A 5 )  to (A 6). The additional details associated with this matching are 
unimportant for our purposes. 

Note that in this case p - E;-b - e-ny exhibits an oscillatory (or ‘supersonic’) 
behaviour as y + co when 7 is imaginary and that it grows exponentially as (1  -f ) 
= lJp+ co (i.e. (A 6)). In  other words, the edge layer may convert the primarily 
exponential solution (which exists in the main layer when fo = 1) into a primarily 
oscillatory solution, which exists in the fast external stream. In this sense, the edge 
layer is reminiscent of the turning-point region of a classical WKBJ problem. Note 
that the edge layer is needed even when 7 is (nearly) real. We emphasize that these 
remarks and the derivations that follow (A 1) are valid when fo = 1 (specifically 
8 w in; see (11)). I n  this case the turning point has moved into the high-speed edge 
layer and the supersonic region in the main part of the shear layer has disappeared. 

Appendix B. A particular solution to the inhomogeneous Airy equation 
A straightforward application of the variation of parameters shows that 

92) = H,(q )  Ai (qAi) +H2(y) Bi (yAi), (B 1) 

where 9$ is a particular solution of (23a) at O(pc-i) and 

H , ( y )  = ${do)[Ai($)Bi($)dy’+P(O) As 

Ai2 ($) dy’ + P ( O )  Ai (5) Bi ($) dy ’} , 
0 

where $ = (A; .  The notation is borrowed from the main part of the paper. For 
y + + m  

7; Ai ($) Bi ($) dy’ = 7 + O( 1 ), 
7tAe 

Ai2 (4) dy’ = O(7-l) 
JCa 
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and 

Note that in (B 4c)  the argument of the exponential is positive and large; in spite of 
this we do not need to consider it in our final expression because of the presence of 
even larger terms. On the other hand, as y +  - co 

T. F. Balsa and M .  E .  Goldstein 

1 Biz (5) dy‘ = O[y-l exp (+$$A;)]. (B 44 

1 Ai (5) Bi (i) dy’ = O( 1 ), 

Ai2 (e )  dy’ = -__ 

Biz (i) dy’ = --+O(l). ( -r$ 
7CAv 

After combining the above equations we find 

where we have tacitly assumed that P ( O )  $; 0, and 

Appendix C. Behaviour of the WKBJ solution near the low-speed edge 
layer 

The WKBJ phases in the subsonic region, the integrals in (9a) and (lOa), rewritten 
in terms of the low-speed edge-layer variable y, expanded in p and truncated after 
the one-term edge-layer expansion, are 

5 COS’ 6-  (7- 1 )  (2 - X) 
+F* [+(y - l)]i(2 - 2): 

Xhi 
dx, 

(C 2a) 

where T* = T,(x) = T,++(l-T2)x, (C 2 b )  

F* = const. = ( y -  l);T!, (C 2c)  

and v is defined by (1  1 b ) .  After finding the behaviour of the WKBJ solution, (8) and 
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(9), near the low-speed edge layer with the help of the above equations, and equating 
this quantity to (36), e&) = const. is readily determined. 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I. A. 1970 Handbook of Mathematical Functions. Dover. 
BENNEY, D. J. & BERGERON, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. 

Appl.  Maths 48, 181-204. 
BETCHOV, R. & CRIMINALE, W. 0. 1967 Stability of Parallel Flow. Academic. 
BLUMEN, W. 1970 Shear layer instability of an inviscid compressible fluid. J .  Fluid Mech. 40, 

BLUMEN, W. ,  DRAZIN, P.G. & BILLINGS, D.F.  1975 Shear layer instability of an inviscid 

BODONYI, R. J., SMITH, F. T. & GAJJAR, J. 1983 Amplitude-dependent stability of boundary- 

COWLEY, S. J. & HALL, P. 1990 On the instability of hypersonic flow past a wedge. J .  Fluid Mech. 

DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge University Press. 
GASTER, M. 1962 A note on the relation between temporally-increasing and spatially-increasing 

GROPENGIESSER, H. 1969 Study on the stability of boundary layers in compressible fluids. N A S A  

HAYES, W. D. & PROBSTEIN, R. F. 1966 Hypersonic Flow Theory. Academic. 
JACKSON, T. L. & GROSCH, C. E. 1988 Spatial stability of a compressible mixing layer. NASA CR- 

KEMBLE, E. C. 1935 A contribution to the theory of the B.W.K. method. Phys. Rev. 48, 54S.561. 
KUMAR, A., BUSHNELL, D. M. & HUSSAINI, M. Y. 1987 A mixing augmentation technique for 

hypervelocity scramjets. AIAA Paper 87- 1882. 
LEES, L. & LIN, C. C. 1946 Investigation of the stability of the laminar boundary layer in a 

compressible fluid. NACA TN-1115. 
LESSEN, M., Fox, J. A. & ZIEN, H. M. 1965 On the inviscid stability of the laminar mixing of two 

parallel streams of a compressible fluid. J .  Fluid Mech. 23, 355-367. 
MILES, J. W. 1958 On the disturbed motion of a plane vortex sheet. J .  Fluid Mech. 4, 538-552. 
MOORE, F. K. (ed.) 1964 Theory of Laminar Flows. Princeton University Press. 
NAYFEH, A. H. 1973 Perturbation Methods. Wiley. 
PAPAMOSCHOU, D. 1986 Experimental investigation of heterogeneous compressible shear layers. 

SCHLICHTINQ, H. 1966 Boundary-Layer Theory. McGraw-Hill. 
SMITH, F. T. 1987 On boundary-layer thickening in transition, and vorticity slugs in internal 

flows. United Technology Research Center Rep. UTRC 87-43. 
TAM, C. K. W. & Hu, F. Q. 1988 Instabilities of supersonic mixing layers inside a rectangular 

channel. Proc. 1st Nut1 Fluid Dynamics Conf., Part 2, pp. 1073-1086. 
VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic. 

769-781. 

compressible fluid. Part 2. J .  Fluid Mech. 71, 305-316. 

layer flow with a strongly nonlinear critical layer. IMA J .  AppZ. Maths 30, 1-19. 

214, 1742.  

disturbances in hydrodynamic stability. J .  Fluid Mech. 14, 222-224. 

TT F-12, p. 786. (Transl. of DLR-FB-69-25.) 

181671. 

Ph.D. thesis, Caltech. 


